Remote Sensing Monitoring of Suspended Sediment Concentration in the Pearl River Estuary and Deep Bay

 Dr. Li-Qiao TIAN^{a,b}, Prof. Onyx Wing-Hong WAI^a, Prof. Xiao-Ling CHEN^b
^a Department of Civil and Structure Engineering, the Hong Kong Polytechnic University, HKSAR, China
^b State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China

Abstract: Total suspended sediment (TSS) in the water column is one of the major parameters that regulates the penetration of light into water, which impacts the primary production in coastal waters especially in bays and estuaries. In this study, a combined approach using both the Chavez (1996) COST image-based atmospheric correction procedure and the pseudo-invariant features (PIF) method was implemented to remove the atmospheric effects of the HJ-1A/1B satellite CCD images of Deep Bay. Then a practical robust retrieval model was created between the satellite corrected reflectance band ratio of Band3 and Band2 (Rrs3/Rrs2) and the insitu measured TSS concentration on August 29, 2012. Finally, the influence of the flood-ebb tidal cycles and wind factors (directions and speeds) on the TSS spatial pattern was also analyzed for the period from September through November in 2008. The results showed that HJ-1A/1B CCD imagery could be used to estimate TSS in the study area over synoptic scales without the support of simultaneous in-situ atmospheric parameters and spectrum data. This would be a very useful information for numeric simulation studies in Deep Bay. In addition, we also analyzed the variability of total suspended sediment concentration based on the satellite images taken by Moderate Resolution Imaging Spectroradiometer (MODIS) from 2003 to 2010 in the Pearl River estuary. A band ratio retrieval algorithm for estimating concentrations of total suspended sediments was developed based on the in-situ data collected on June 5, 2012. Long-term TSS distribution maps derived from MODIS data onboard Aqua satellite showed significant variations in both space and time. The factors should be further investigated.

Keywords: suspended sediments, remote sensing, MODIS, Pearl River Estuary, Deep Bay

Remote Sensing Monitoring of Total Suspended Sediment Concentration in the Pearl River Estuary and Deep Bay

Liqiao TIAN^{1,2}, Onyx W.H. WAI^{1,*} and Xiaoling CHEN²

*Email: ceonyx@polyu.edu.hk

¹Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Kowloon, Hong Kong, China ²State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 430079, China

Hong Kong, Nov. 17, 2012

Outline

***** Introduction

***** Theory basis

***** Cases: Pearl River Estuary & Deep Bay

***** Conclusion

Introduction

Plays an important role in water quality Total Suspended Sediment (TSS)

- nutrient and pollutant carrier
- transparence/turbidity/color
- the construction of port
- and so on
- Traditional approach
- time consuming
- labor extensive
- high price
- discrete in temporal and spatial distribution
- Remote sensing
- large-scale observations
- frequently revisit

Theory basis-atmospheric correction

At satellite altitude ~90% of sensor-measured signal over ocean comes from the atmosphere & surface! (Wang Menghua) It is crucial to have accurate atmospheric correction!

Theory basis—TSS Retrieval

Reflectance spectra with different TSS concentrations

Case 1: Pearl River Estuay

Atmospheric correction& TSS Retrieval

Atmospheric correction Band ratio R.E. =13.1788% TSS: 4.16-106 mg/L N=32; RE=22.31%

MODIS 645, 555nm ratio Spatial resolution: 250、500m

Atmospheric correction& TSS Retrieval

	2002	2003	2004	2005	2006	2007	2008	2009	2010	总计
1	-	7	5	7	5	9	6	12	5	56
2	-	3	5	1	2	5	2	6	1	25
3	-	4	2	8	0	0	3	3	6	26
4	-	5	2	0	1	2	2	2	1	15
5	-	3	4	0	3	6	2	7	5	30
6	-	2	3	0	3	3	1	0	2	14
7	9	11	2	2	7	10	3	6	11	61
8	10	5	2	2	7	4	7	2	5	44
9	5	2	5	0	5	4	4	5	2	32
10	8	5	10	3	6	3	4	9	7	55
11	6	10	7	7	5	9	6	2	9	61
12	6	11	6	6	12	7	12	0	13	73
Total	44	68	53	36	56	62	52	54	67	492

Inter-annual variation

0 0-10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 >80

TSS (mg/L)

Monthly change

0 0-10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 >80

TSS (mg/L)

Seasonal change

Wet-Dry season Change

0 0-10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 > 80 $\frac{TSS (mg/L)}{}$

Case 2: Deep Bay

- \bigstar Stations in September through November, 2008
- O Stations on August 29, 2012
- Stations on October 26, 2012

MODIS Resolution: 250m---- Pearl River Estuary HJ-1A/1B CCD:30m----Deep Bay

Case 2: Atmospheric correction

Atmospheric correction

- Combined COST& PIF method
- Image-based information was employed
- Pseudo-Invariant Features were selected to do the radiation standardization for long-term monitoring

Avoid the aerosol influence

TSS from lab analysis is believable OBS measurements

OBS calibration using the in-situ mass in water samples

TSS retrieval & Validation

Regression relationship between TSS concentration and the reflectance ratio (Rrs3/Rrs2) of band 2 and band 3 of HJ-1A/1B satellite CCD imagery

Comparison of TSS concentration between the retrieval values from the insitu data and the HJ-1A/1B CCD images collected on August 28, and October 24, 2012

TSS spatial pattern

TSS concentration maps from HJ-1A/1B satellite CCD images on August 28, and October 24, 2012

TSS variation

OBS measurements & tide circle

Tide height(m) ~A1(TSS,mg/L) ~K1(TSS,mg/L)

Water area variation

Date	measured height of	water area	exposed tidal	Percent of the exposed
	tide (m)	(km ²)	zone (km ²)	tidal zone (%)
10- Oct	1.14	72.9783	7.0992	8.87
26- Oct	1.7	78.9795	1.098	1.37
14- Nov	1.98	80.0775	0	0
7- Dec	0.89	71.1558	8.9217	11.14
15- Dec	0.97	71.8524	8.2251	10.27
19- Dec	0.52	69.0435	11.034	13.78

Conclusion

- * Some effective atmospheric correction methods were applied to process MODIS and HJ-1A/1B CCD data.
- * TSS retrieval models suitable for PRE and Deep Bay were established.
- * TSS information and its variation are focused on in this work.
- * Influence of meteorological-hydrological data would be focused on in the future.
- I got the information, but the reasons need further investigation I think, numeric simulation is needed in the future study!

Thank you

