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Abstract:  Submerged jets are used in widespread engineering applications, such as 
chemical reactors, combustion chambers, and ocean outfalls. While the round jet, 
being the commonest form of submerged jets in practice, has been extensively studied, 
the rectangular jet is of research interests in the sense that it approximates the ideal 
two-dimensional (2D) flow geometry. 
 
In this study, the mixing behavior across the jet-fluid interface of a rectangular jet is 
investigated experimentally with particle image velocimetry (PIV) and laser-induced 
fluorescence (LIF). The objectives are to understand the inter-relationship between 
mixing of momentum and dilution of scalar species concentration in a rectangular jet 
discharging into a stagnant environment. The submerged rectangular jet was placed 
into a large water tank to avoid boundary effects, with Re ≈ 4500 to produce turbulent 
flow at the nozzle exit. The aspect ratio (AR) was 10 to approximate a 2D flow. 
Conventional statistics of the velocity and scalar concentration data were performed 
to investigate the global jet behavior, including flow regimes and self-similarity 
features. Meanwhile, instantaneous data at several points along the jet-fluid interface 
were observed and analyzed in order to investigate the correlation between 
concentration and velocity fluctuations in local region. The results show that for the 
region near the exit (2 to 2.5D, D being jet exit height), velocity and concentration 
fluctuations are influenced by vortex motions symmetrically across the jet. Beyond 
2.5D, co-presence of large-scale concentration and radial velocity fluctuations are 
found to be not symmetric across the jet, which occurs only on one side of the jet. 
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Wastewater discharge 
 Wastewater is often discharged into receiving waters by submerged jet; 

 Previous researches mainly focus on submerged round jets; 

 Rectangular jets can approximate the ideal two-dimensional (2D) flow 
geometry is of fundamental interests to wastewater discharge; 

 
 

Source: http://www.amazfacts.com Source:http://www.pavingexpert.com/edging5.htm 



Previous Works 
 

 W.R.Quinn(1992) & Zaman(1999): For rectangular jets, the aspect ratio (AR) 
influences the jet turbulent mixing process  

 AR = L/D, where L and D are the long and short sides of rectangle; 

 Rectangular jets with large AR can be considered Quasi-2D; 

 

 Mi. et al.(2005): Rectangular jet can divided into three distinct zones (AR>15): 

 (I) Initial quasi-2D region (plane-jet-like); 

 (II) Transition zone; 

 (III) Final quasi-axisymmetric region 

 Even AR = 10, Half-Power-Law Decay Region (I) can be observed. 

 



Objectives 
 To verify half-power-law decay region can be observed for 

rectangular jet with AR=10 

 

 To characterize the mixing properties, including both 
momentum and scalar species spreading across the 
interface between the flow and its ambient fluid; 

 

 To enhance outfall designers understanding on turbulent 
rectangular jet mixing. 



Experimental Setup 
 

 Concentration Measurement – Laser Induced Fluorescence (LIF) 
 The selected fluorescent tracer can absorb laser light energy and emits a 

light with longer wavelength; 
 Background and contrast are corrected 
 Concentration is captured and represented as pixel grayscale; 

 

 

 
 

 
 Velocity Measurement – Particle 

Image Velocimetry (PIV) 
 Two successive images of seeding 

particles are captured by another 
CCD camera at a known time 
interval Δt; 

 Particle Velocity V=
Δ𝑆

Δ𝑡
, where ΔS is 

the displacement of the particle; 
 

 

 
 



Experimental Setup 

Length L = 75 mm 
 
Height D = 7.5 mm 
 
AR = 10 

Rectangular Nozzle 

Water Tank 

Length  = 1.8 m 
 
Width  = 1.2 m 
 
Height = 0.5 m 

Flowmeter 

CCD Cameras 



Experimental Setup 
Typical PIV Images – Instantaneous 
– Time-Averaged Mean Velocity Vector Field 
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Experiment Settings 
Experiments were performed with the following conditions and 
settings: 
 Flow rate: 1200 L/hour, corresponding to an exit velocity of Uo=0.6 

m/s. 
 

 Re = 
𝐷 u0

𝜈
 ≈ 4500 (>4000) 

Labus and Symons (1972): In most cases, provided the Reynolds 
number exceeds 2000 the jet flow will be turbulent. However, to reach 
a fully developed turbulent flow state, Reynolds number should be 
around 4000.  
 
 Range of capture: 0 – 10D 



Analysis and Results 
 Conventional Statistics  

 Flow field division; 

 Self similarity  

   

 Conditional Sampling 
 Samples concentration data from instantaneous 

results that met specific local requirements; 

 Correlates the local concentration profiles to 
velocity fluctuations.   



Conventional Statistics 
 Fluctuation calculations 

 u’, v’, and c’ are the standard deviations of U,V, and C, 
respectively 
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Centerline Mean Velocity Decay 

(I) 

(II) 

(III) 

Region (I): 0-2.2D 
Potential Core 
 
Region (II): 2.2-3.7D 
Transitional 
 
Region (III): 3.7-10D 
Half-Power-Law 
Decay 
(Uc ~ x-1/2 , Quasi-2D)) 
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Self-similar Velocity Profiles 
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Velocity half width 
bu = 0.155 x 

 
Round jets: bu = 0.107x 

Plane jets: bu = 0.116x  
  



Self-similar Stress Profiles 
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Self-similar Concentration Profiles 
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Concentration half width 
bc = 0.207x 

 

Round jets: bc = 0.127x 

Plane jets: bc = 0.157x 

 
𝑏𝑐

𝑏𝑢
 = 0.207/0.155 = 1.34 

 
Plane jets (Fischer et al. 1979) :  
𝑏𝑐

𝑏𝑢
 = 1.35  

Concentration field spreads 34% faster than the velocity field  



Self-similar Concentration Variance 
Profile and Turbulent Flux Profiles 
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Conditional Sampling of Concentration 
 Select an observation point P (xp,yp) 

at the estimated boundary; 

 Use an investigation window to  
obtain the mean concentration Cmean 
inside the window (0.05D x 0.1D) 

P 

• Set a Peak Factor, g, such that in the sampled instantaneous 
concentration field: Cmean > Cp_avg + g∙σP (g>0), or Cmean < Cp_avg + 
g∙σP (g<0), where Cp_avg and σP are the time-averaged 
concentration at P and its standard deviation, respectively. (g=2) 

• Average the conditionally sampled concentration fields and their 
corresponding velocity fields.  



Observation point at (2.5D, 1D) 



Observation point at (5D, 1.5D) 



Observation point at (7.5D, 2D) 



Conclusions 
 Rectangular jets with AR≥10 have half power law decay after 4-5D 

, and can be considered as quasi-2D in this region;  
 

 It is verified that within the quasi-2D zone, rectangular jet 
concentration spreads 34% faster than the velocity; 
 

 In the region nearby the exit (2-2.5D) there is symmetric vortex 
effect on velocity and concentration fluctuations, namely along 
both +y and -y axis high concentration is found to be associated 
with large radial velocity fluctuations v’; 
 

 After 2.5D, the copresence of large +c’ and +v’ fluctuations is 
non-axisymmetric, i.e. only appears on one side of y axis.  



Thank you! 
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